
How to Use Each Completed Feature:
How to Use Each Completed Feature:...1
Intro...1
Project File Structure.. 2

Flutter App... 2
Firebase Project...3

Project Features...3
Add Words - text and video:.. 3
View Stats..4

Page Info:...4
State Info:...4
Key Functions in Build:.. 4
Graph Builder Functions:... 5
Graph Data Functions:...5
Notes:...5

Authentication:... 5
Sign in Methods:.. 5
Handling Authentication Status in the App:..5

User Roles and Administration:... 6
Add Child to Parent:...7
Video Functions and Playback:... 7
Researcher Page:..7
Give Another Parent Access to Current Child:.. 8
Cloud Functions:..8

Updating Cloud Functions..9
Spell Check:...10
Localization:...10
Firestore Database:..11
Firebase Repository:..12
Data Models:..12
Data Services:... 13

FAQs... 13

Intro
This document is pretty long. It describes the design of each feature in the app and gives

some description of the code structure for each. While reading this document completely will
certainly help you develop the project, it will also take a long time. So using the table of contents
to reference specific features is recommended.

Project File Structure
The Project is split into two main portions:

1. Flutter App: The flutter app contains all of the logic and UI for our frontend. It handles
data views for researchers, provides login and authentication, and provides all of the
word tracking and recording features of the app.

2. Firebase Project: This section of the app currently only contains cloud functions which
are used to run secure actions. However, the firebase console also contains rules for the
database that control access to data.

The project is split into the following folders:
+---baby_words_tracker (Flutter App)
+---docs (Documentation Website)
\---firebase-project (Firebase Project)

Flutter App
The flutter app is found in the baby_words_tracker folder in the root of the repository and is
structured as follows:
baby_words_tracker/ # Root project directory
├── android/ # Android app platform code
├── assets/ # App assets like images or data files
│ └── LECS_mascot.png # The mascot of the LECS lab
│ # Note: Add assets to pubspec.yaml to use them in the app
├── doc/ # Flutter-generated documentation
│ └── api/
│ └── index.html # Main page of the generated docs website
├── ios/ # iOS app platform code
├── lib/ # Main application code and logic
│ ├── auth/ # Authentication and user model services
│ ├── data/ # Database interaction logic
│ │ ├── listeners/ # Listeners for document change events
│ │ ├── models/ # Data models that mirror Firestore docs
│ │ ├── repositories/ # Abstractions to read/write data
│ │ └── services/ # Logic that uses models and repositories
│ ├── l10n/ # Localization (translations)
│ ├── pages/ # App screens and navigation
│ │ └── shared/ # Shared components (top bar, bottom nav)
│ ├── util/ # Utilities and enums (language, role…)
│ ├── video/ # Video-related functions (single file)
│ └── main.dart # App entry point: provider setup, routing
├── linux/ # Linux app platform code
├── macos/ # macOS app platform code
├── test/ # Widget tests from Flutter template
├── web/ # Web app platform code

└── windows/ # Windows app platform code

Firebase Project
The Firebase Project is used to develop cloud functions. It can also be used to develop
database rules and other Firebase things. The structure is as follows:
firebase-project/ # Firebase project root folder
├── emulator-sources/ # Local Firestore emulator data
│ ├── auth_export/
│ └── firestore_export/
│ └── all_namespaces/
│ └── all_kinds/
├── functions/ # Cloud Functions
│ ├── auth/ # Functions to manage custom claims │ │
 and check roles. Also a role enum.
│ ├── node_modules/ # Dependencies (auto-generated)
│ ├── util/ # Utility functions
│ │ (e.g. logging a generic data object)
│ └── index.js # Main file for all cloud functions
└── commands.txt # Helpful Firebase emulation CLI

 commands

Project Features

Add Words - text and video:
Path: <repo_folder>/baby_words_tracker/lib/pages/landing_page.dart

 The add words feature is at the bottom of the landing page and includes both text and
video input. The user can input a string of words, phrases, or sentences into the text box, and it
will be parsed into individual unique words that are in either the english or spanish dictionary.
The words are sent to spell check using the check_and_update_words() function to ensure that
the given words are valid English or Spanish words. Any new words (project wide not just for the
specific child) will be added to the word bank. For more information on this function, please see
the spell check section. The user can also select a video from their device. The video selector
will only allow .mp4 videos to be selected. To do this we use the file_picker library. This library
handles the direct calls to the user’s device’s file system and will only show files that match the
specified file type. For more information about the library see the following documentation.
https://pub.dev/packages/file_picker
 After the words have been verified the app will use the cloud functions to fetch a signed
url. A signed url is a https API call to our Google Cloud created by firebase functions. For more
information, please see the cloud function or video section. That url will then be used to upload

the selected video, if there is one, to the user’s (parent) folder in the google cloud storage
bucket. The folder name for each user is their user id. Then, for each unique word, a word
tracker will be created or updated in the selected child’s word tracker collection. You can identify
the current child by making a call to the current child service. The current child’s name is also
displayed in the top right hand corner of the Top Bar of the user interface.

View Stats
Path to page: <repo_folder>/baby_words_tracker/lib/pages/stats.dart
Page Info:
 The View Stats (or Learning Summary) page of the app allows a parent to look at graphs
showing statistics about their child's learning. The Syncfusion package is used for graph display.
The user is able to select a graph to view using a drop down at the middle of the screen, and is
able to select the time horizon of the graph using a numerical input box below the graph.
State Info:

The page is stateful to allow the above configurations to update the pages state, which
determines how the graph is built. Functions to update this state information are also declared
within a state, to allow features built in the built function to change their values. The type of
graph to be displayed is stored as a GraphType Enum, which should be expanded whenever
new graph types are added. There is also a global final list of GraphTypes called
graphsWithLength, that indicates which graphs should have the ability to have their length
adjusted. This should also be updated whenever more graphs are added. A
TextEditingController is declared once to allow user submission of the graphLength.

Also stored in this page's state is the graphCache, a map from 3-tuples of (GraphType,
int, String) to dynamic.

graphCache element:
- (GraphType, int, String)

- GraphType = The graphtype of the stored information
- int = The length (in days) of the stored information
- String = the childID of the child the information is about

- dynamic = Data used to generate a graph of GraphType, stored as a List

 This map is used to prevent re-querying the same data during a single session on the stats
page, in order to save database hits. This functionality could absolutely improved to persist over
an entire session of the app, over a certain amount of time, or to update only whenever the
relevant info changes.
Key Functions in Build:

- wordsKnownFeature = Simple wrapper function for a database call to get the number of
words a child knows

- graphSwitcher = Wrapper for a switch statement that selects the proper graph to be
displayed. Needs to be expanded whenever a new graph is added

- lengthChangeFeature = wrapper for the text box and submit button that use the function
in State to change the graph length

- graphTypeSelectDropdown = What it says on the box
Graph Builder Functions:
Every graph is a FutureBuilder – A function that is itself synchronous but depends on the result
of an asynchronous function. which depends on the results of a Graph Data Function that
makes queries and organizes them into a list to be turned into a graph. Once the future is done
being computed, its result is added to the snapshot, which the graph function then grabs the
data from, and builds a graph. Before the data is added to the snapshot, it can be in various
loading or error states, where it can be set to return another widget to indicate its state e.g.
loading wheel. Explanations on how to create graphs (synfusion charts) can be found in the
syncfusion documentation here.
Graph Data Functions:
These functions make the proper database queries based on the request of the user, then sort
or otherwise organize the data and return a list for their coupled Graph Builder to turn into a
graph.
Notes:
Graphs for (and therefore queries on) the entire history of a child's learning can grow large and
expensive quickly. It would be wise to add better caching and/or more database end statistics so
that they are not done via many database reads.

Authentication:
Authentication in our app is handled by firebase. The authentication UI pages are

provided by the package firebase_ui_auth. These pages provide the user with a sign in screen
and a profile page. Users are given a randomly generated userID (UID) on account creation and
stored in the firebase authentication database. Additionally, users are given the parent role by
default and can be given more roles later.
Sign in Methods:
 Sign in methods can be enabled and disabled in the Firebase console. Password and
email based sign in is enabled by default. But other providers like google and icloud can and
should be enabled.The setting for this can be found in the firebase console in the authentication
page under the sign-in methods tab.
Handling Authentication Status in the App:
 Authentication status and user roles are checked and stored by the
AuthenticationService class (found in ‘baby_words_tracker/lib/auth/authentication_service.dart’).
The class notifies users whenever the user uid, email, displayname, or custom claims changeA
provider for this class is created in main and provided throughout the project. This class should
be used to access user email, uid, displayname, and custom claims. Important note: the

https://pub.dev/documentation/syncfusion_flutter_charts/latest/charts/

UserModelService is a listener to the AuthenticationService; however, it takes a moment to load
new data, so in cases where user data is not required, the authentication service should be
used to access information or listened to for changes. Otherwise the UserModelService should
be used. A consumer widget should be used to access the information the
AuthenticationService stores.
 User database data is stored and synchronized using the UserModelService class in the
same folder as the AuthenticationService. This class is also initialized and provided using a
provider in main. This class handles syncing authentication data with the database and pulling
the user model from the database when the current user changes. Additionally, it listens to the
current user model document in the database and notifies listeners when a change occurs. This
class should be used to retrieve user specific information such as childIDs for a parent. The
class should be accessed using a consumer widget and provider.

User Roles and Administration:
The admin page is available only to users with the admin custom claim (role). If a user

attempts to run the functions on the admin page without the admin role they will fail a
permissions check.

User roles can be managed in the admin page. The admin page is accessible from the
researcher home screen by clicking on the shield icon in the top right corner.
The top of the admin page features a search bar. This bar allows the user to search for a
specific email address to manage roles for or to get custom claims for. Below the search bar is a
text field showing the currently selected email address.
The admin page provides 3 main features:

1. Fetching Custom Claims: The top button “Get Custom Claims,” gets the custom claims
for the email in the search bar. If the email is not valid an error message will be returned
instead. Custom claims will appear in a text element below the search bar labeled User
Roles.

2. Assigning/Removing Roles: Below the “Get Custom Claims” button are a series of
buttons dedicated to managing user roles. The buttons each do what they say. Adding or
removing a custom claim from the current email address. After a button is pressed, a
cloud function will be called and the role will be removed or added to custom claims for
the selected user. After the function completes, a message will be displayed in a popup
bar at the bottom of the screen indicating success or failure and the reason for failure.

3. Fetching the UID-Email Table: The bottom button fetches the UID-Email table. This is a
table containing the email address, user ID, custom claims, and account status of every
user. The table is then displayed in a scrollable list, and downloaded as a CSV. This
table is quite large, so it may take some time for the function to complete. The table
allows a user to deanonymize the database if necessary for research or administration
purposes; however, it should be considered sensitive since the database is supposed to
be anonymous for all users except for administrators.

Add Child to Parent:
Path to utils: <parent_directory>\baby_words_tracker\lib\util\child_utils.dart
Path to GUI location: <parent_directory>\baby_words_tracker\lib\pages\settings.dart

 Adding a new child is done with this utility function. The GUI has the user input a name,
birth date, and set of languages that they speak, then that information is passed into the util
function addChildToCurrParent. If the current parent exists, the util function uses the
childDataService to create a new child and add it to the database with the current parent set as
its parent. It then uses to ParentDataService to add the newly created child to the list of children
of the current parent. The child and parent mutually having each others ids in their parents and
children lists respectively is all that it takes for the relationship to be known by the app.

Give Another Parent Access to Current Child:
Path to utils: <parent_directory>\baby_words_tracker\lib\util\child_utils.dart
Path to GUI location: <parent_directory>\baby_words_tracker\lib\pages\settings.dart

 Similar to adding a child to the current parent, this feature allows the user to add their
currently selected child to another user of the app. This was chosen to be done simply by
passing in a valid email, because people who are mutually taking care of a child can reasonably
be expected to know each others emails. Because the current user typically will not have
permission to directly change database information about another user, and the other parents ID
must be found based on their email, this functionality is implemented through a firebase cloud
function "addChildToOtherParent", preventing exposure of these calls to a malicious end user.
Reference Cloud Functions for more information on how to modify this.

Video Functions and Playback:
Path to utils: <parent_directory>/baby_words_tracker/video/video_functions.dart
Path to display: <parent_directory>/baby_words_tracker/pages/video_display.dart

 Video function implements all of the logic needed for video upload on the landing page.
There are three steps to the video upload process: file selection, get signed url, upload file.
They must be implemented in that order because the file path/name is needed for the signed
url. File selection is handled by the file_picker library and enables users on android, iOS,
macOS, and windows to pick any .mp4 file on their system. The base file path (i.e. just the
filename without any of the system path information) is passed to the get signed url cloud
function. These functions are implemented in the firebase-project directory and more
information on them can be found in the Cloud Functions section. The response to this call is
the signed url that should be used for the upload. This will only allow uploads to the specified file
path for 5 minutes, so the signed url needs to be generated for each video upload. To upload
files use the signed url like an api call and add the video file written in bytes to the body of the
request. The response from the request will be 200 if the request is successful. Note we are not

currently compressing the videos because the flutter library that has been the standard is no
longer available and no suitable alternative has been found as of . Apr 23, 2025
 Video download/playback has a very similar process. When a video is uploaded, the
word tracker for the associated word is also updated to include the base file path. A list of words
with videoIDs that are not null is pulled down using the WordTracker service. A dropdown menu
is displayed to the user to allow them to select which word they would like to see a video for.
Once a word is selected, a signed url for the file path in google cloud is generated and used to
request the file. The file is returned in bytes and it is written to a temporary directory. This
directory will be wiped from the user's device when the app is closed, so there are no concerns
about exponentially increasing the storage needed on a user's device. Once the file is written, it
is theoretically available for playback. However, we have not been able to get this feature to
work as of . Apr 23, 2025

Researcher Page:
Path: <repo_folder>/baby_words_tracker/lib/pages/researcher_home_page.dart

 The researcher page is only accessible to users with the researcher user type. After
logging in, the researcher is sent to the researcher page which displays a scrollable table of all
of the word utterances submitted by the users of the application. Each word utterance entry in
the table contains the child ID, child age, the word that was uttered, the language and part of
speech of the word, and the date of the first utterance. The researcher can filter the table by
selecting a field name from the dropdown menu and entering the value of that field to filter by in
the text box. The text box provides autocomplete suggestions based on the field selected.
Selecting the “filter” button will display the filtered table, and the “clear filter” button will return
the table to its original state. The table can also be sorted by any field by clicking on the
corresponding header, with an up arrow by the header indicating that it is sorted in ascending
order and a down arrow indicating that it is sorted in descending order. The researcher can
download a CSV file of the current data table by pressing the “Download as CSV” button. The
CSV will contain the content of what is currently displayed in the table, so if a filter is being
applied then that will be reflected in the CSV file.

Cloud Functions:
Path: <parent directory>/firebase_project/functions

 Cloud functions run on a firebase hosted server and are used whenever secure code
execution is needed (role limited activities, sensitive data filtering, etc…) or when the adminSDK
is necessary (listing users, changing custom claims). Cloud functions are edited and uploaded
by the app editors and run out of reach of end users. The logic behind this is simple. If we check

the role of a user in the frontend to deny a certain functionality, they can simply edit the app or
send the http request on their own. The system must deny them on the backend so they cannot
hijack our app.

In our application, cloud functions are used to do the following:
1. Assign/Remove Roles: Roles are managed as custom claims on our users’ JWT

(authentication) token.
a. Role management requires that a user be authenticated and have their custom

claims checked.Editing custom claims can only be done using the adminSDK
which can only be securely accessed in a hosted context. Otherwise, credentials
would be shipped with the app giving end users full access to admin functionality.

b. The cloud functions for role management check that the user is authorized and
meets the required role. If they meet the requirements, the desired role is added
or removed.

Role Min Role to Remove Min Role to Add

Parent Admin Researcher

Researcher Admin Admin

Admin Admin Admin

2. Get Custom Claims for a User: Retrieving custom claims can only be done with the

AdminSDK. To retrieve custom claims, the user must be an admin. This function returns
the custom claims for a user with a specified email address. The custom claims are
returned in a map which has the format {“<name>”:<bool_value>}

3. Get Email-UID Table: This function allows an admin user to retrieve the full list of userIDs
and email addresses along with each user's custom claims and account status. The
table is formatted with the following format:

email uid disabled admin researche
r

parent unauthent
icated

String String true/false true/false true/false true/false true/false

The table’s current format reflects the current number of roles. If another role was added,
it would be placed in a new column ordered based on where it is defined in the
user_roles.dart enum in the utils folder. For this reason, it is best practice to check the
header of the table in any function that uses it to check user roles. Otherwise,
changes to the enum could adversely affect your code.

4. Generate Video Upload/Download Signed URLs: These functions use the authentication
service to get the current users id, create the path the file in the Google Cloud bucket,
and then make the current url with the given meta data. They only allow either read or
write privileges to the specified file for 5 minutes for added security. Note that for upload,
a blank entry to the path is made before the upload because you can not upload to a file
path that does not exist.

Updating Cloud Functions
 Functions are updated by changing the index.js file in the functions folder and then
running a firebase tools command. Any function that is exported from index.js will be treated as
a cloud function. The steps are as follows

1. Modify and save index.js
2. From the firebase_project directory run: firebase deploy --only functions

a. If you want to deploy other things as well, firebase deploy deploys all applicable
things in the folder

Note: Our cloud functions use ESLint for formatting. Functions will not deploy if they do not
match the ESLint rules. Set up ESLint by doing the following:

1. In the <parent directory>/firebase_project/functions folder run the following command to
install dependencies including ESLint:

a. npm install
2. Install the ESLint extension for VSCode:

https://marketplace.visualstudio.com/items/?itemName=dbaeumer.vscode-eslint
3. Add the following text to your VSCode settings.json file.

 "editor.codeActionsOnSave": {

 "source.fixAll.eslint": true

 },

 "eslint.validate": ["javascript"]
a. Access the file by pressing `ctrl + ,` to open settings and clicking the file icon with

an arrow over it at the top right to open the json file.
b. Or by pressing `ctrl + shift + p` and typing settings then looking for the options

with (JSON) at the end.
Your index.js and other javascript files in the functions folder should now be automatically
formatted on save.

Spell Check:
Path: <parent directory>/baby_words_tracker/utils/check_and_update_words.dart

 Spell check is a feature built to assist the add words feature, and can be found in the
check_and_update_words.dart file in the utils folder. This function is only invoked by the add
words section of the landing page. When a user submits text, each unique word is passed to a
spell check function. The goal of this function is to check if the word is in the english or spanish
language and add newly found words to the word collection in the database.

There are 2 ways to check if a word is in the dictionary. The first is to check the current
word collection to see if a doc exists for the word. This is the first method that is used because it
is faster than making the API call. The second is to check the Wiki Text API for an input for the
given word. We are unaware of any official documentation for this API outside of the base url
used in the function. The word will be checked for both English and Spanish. If the API call is
successful (response code == 200), then the language is added to the found language list, and
the part of speech is parsed out of the response. The definition for the word is also needed, but

https://marketplace.visualstudio.com/items/?itemName=dbaeumer.vscode-eslint

cannot be found in this response. Therefore, a separate API is made to another wiki API to
retrieve the definition. The first definition given is assumed to be valid. It is possible for a word to
exist without returning a part of speech or definition. This is actually incredibly common and
should not be seen as a sign of an issue. The definitions will initialize to null and the part of
speech will be “unknown” in this case. We then use the part of speech and definition for each
language to form a Word model that will be returned and it also added to the word collection. If
no response is received for either language, then the word is considered to not exist and null is
returned and an error is thrown.

Localization:
Path: <parent_directory>/baby_words_tracker/l10n/

 Localization refers to the ability to switch between languages. The name comes from the
fact that traditional localization would initialize a users language based on their location, and
then use their language preferences on sign in. Our app, on the other hand, should only ever be
used within the United States, so we automatically initialize to English and then have a
language switch setting on the setting page for the user to flip to Spanish. All text within the app
is localized using the localizationService. The service reads in a key and uses the
all_localizations class to pull the actual text that will be displayed based on the current locale.
The locale is updated anytime the user flips that language setting. To use the localization
service the widget must be wrapped in a consumer widget that implements the
LocalizationService class. Then the translation method can be called on the key for the text field
and the proper text for the current locale will be displayed. It is best practice to make keys as
similar to the actual text or as descriptive as possible so that code still accurately portrays the
meaning of the text that will be displayed. It should be noted that the user profile and sign in
pages do not use our localization system, but instead implement the firebase localization
service because those pages were built by firebase. This is implemented in main.dart, and the
correct firebase localization is determined by listening to the locale of our localization service.

Firestore Database:
 We use firestore to store all in app information not related to authentication. Firestore is
a NoSQL database that uses collections and documents (docs) to store data. Docs are similar
in structure to a JSON file, and collections are simply a container for those files, like a table
would be in a SQL database. A key feature that is unique to firestore is that docs can have
subscollections of data. Subcollections support scaling data storage and should be used for
large amounts of varying storage under a document. It is recommended to use a subcollection
of a Map field if the amount of data stored will need to be scaled in any way. These
subcollections will persist even if the document that hosts the subcollection has been deleted,
so they must be explicitly deleted before their parent document is.

Our current database structure can be seen below:

Parent (Collection)
├── id (String, Document ID)
├── childIDs (String[], list of child document ids)
├── language (String)

Researcher (Collection)
├── id (String, Document ID)
├── name (String)
├── email (String)
├── institution (String)

Child (Collection)
├── id (String, Document ID)
├── name (String)
├── birthday (Timestamp)
├── parentIds (String[], list of parent document ids)
├── language (String[], language codes (es or en))
├── wordCount (Int)
├── Word Tracker (Subcollection)
 ├── id (String, Document ID is the word)
 ├── firstUtterance (Timestamp)
 ├── videoID (String, filename of video in google cloud)

Word (Collection)
├── id (String, Document ID)
├── definition (Map<String, String>: “language_code” : definition)
├── languageCodes (String[])
├── partOfSpeech (Map<String, String>: “language_code”: partOfSpeech)

 Note that the document IDs are not actual fields in the database, but instead how to
reference a specific document. However, the ids are a field of the user model. These ids are
identical to the ones found in the authentication database, so the correct user can be found
using the user model after sign in. There is no identifying information for the parents in the
database to ensure anonymity of the users and to minimize potential bias from the research
team.

To access the database directly you will need access to the firebase console. To get this, Dr.
Lisa Hsin will need to add you as either a collaborator or an owner to the Google project.

Firebase Repository:
Path: <repo_folder>/baby_words_tracker/lib/data/repositories/

The FirebaseRepository class provides functions for interacting directly with the Firestore
database. It is used by the data service classes to work with documents in all collections and
subcollections. Documents are generally sent to the FirestoreRepository class in a Map<String,
dynamic> format. Documents are retrieved from the FirestoreRepository class as a
DocumentWithId class or list of DocumentWithId classes.
 Currently, the FirestoreRepository class catches and prints errors then returns null, false,
or an empty list on a command failure. Work needs to be done in the future to enhance error
handling at the repository and project levels.

Data Models:
Path: <repo_folder>/baby_words_tracker/lib/data/models/

Data model classes mirror a document stored in the Firestore database. Each model
class generally reflects a type of document stored in a single collection. These classes let us
define a consistent structure for documents and retrieve and work with them in the code. Each
model supports basic functions for serialization and deserialization from a JSON string, a map
object, and a DataWithId object. Map is used to send data to the repository and DataWithId is
used to convert retrieved data into a model object. These models are generally a one-to-one
conversion with the exception of timestamps and language codes. The timestamp object in
firestore can be translated to a DateTime object in dart easily, and this is done throughout.
Languages codes are initialized as an enum in the data models to ensure codes remain
consistent with the international abbreviation. Use the displayName function to get the language
code as a string of the full language name (ex: LanguageCode.en.displayName = “English”),
and use the displayCode function to pass the actual code as a string. By convention, the
language code is passed to the database when a language is listed.

Data Services:
Path: <repo_folder>/baby_words_tracker/lib/data/services/

Data services add a layer of abstraction between the database layer (repository) and the
front end. These functions are the only place that a repository function should ever be called.
These functions are specific to the needs of the specific model, and provide more fine grained
CRUD functionality. For example if you need to know the value of a specific field for a
document in a collection, then you should use a getter from the corresponding data service.
Note that most of the services do not implement update and delete functionality because parent
users do not have database permissions to perform those operations. This is also where we do
error handling at the moment. Errors from the repository are caught but thrown to the next level.
Instead all of these functions, except those that return a standard data type, return a nullable
data model. The model will only be null if the repository function call fails.

FAQs

Q: How do I add new words that my child has said?
A: Select the text box on the homepage below “My Child Said…”, enter a word or sentence,
then press submit. If a word is not found in the dictionary, an error message will display and you
will need to retype your input. To attach a video to any of these words, press the select video
box and navigate to the video you would like to include. This video can not be more than 5 MB.

Q: How do I add a new child to my account?
A: Select the settings icon at the bottom of the screen, then under the “Add Child” heading, type
the child’s name in the “Choose Name” text field, then select the child’s birthday from the “Tap to
choose birthday…” field. Click the box next to the language(s) that your child speaks so that a
check mark appears, then press the submit button. You can toggle between your children on the
home screen by pressing the three dots on the upper right and selecting a child.

Q: How do I give another parent access to my child?
A: First, make sure that the other parent has made an account. Next, select the settings icon at
the bottom of the screen, and scroll down to the header that reads “Give another Parent Access
To Current Child.” Type in the email address of the parent you would like to add the child to,
then press the submit button.

Q: How can I see statistics of my child’s learning progress?
A: Select the bar graph icon to navigate to a learning summary page. To see the “New Words
Per Day” graph, select “Words Learned / Day” from the dropdown menu. You can change the
number of days that are displayed by typing a number into the “Over how many days…” text
field and pressing submit. To see the “Total Number of Words by Part of Speech” graph, select
“All Words / Part of Speech” from the dropdown menu.

	How to Use Each Completed Feature:
	Intro
	Project File Structure
	Flutter App
	Firebase Project

	Project Features
	Add Words - text and video:
	View Stats
	Page Info:​
	State Info:
	Key Functions in Build:
	Graph Builder Functions:
	Graph Data Functions:
	Notes:

	Authentication:
	Sign in Methods:
	Handling Authentication Status in the App:

	User Roles and Administration:
	Add Child to Parent:
	Give Another Parent Access to Current Child:
	Video Functions and Playback:
	Researcher Page:
	
	Cloud Functions:
	Updating Cloud Functions

	Spell Check:
	Localization:
	Firestore Database:
	Firebase Repository:
	Data Models:
	Data Services:

	​FAQs

